Gary S. Vasilash

Gary S. Vasilash is the founding editor of Automotive Design & Production (AD&P) magazine, a publication established in 1997 by Gardner Publications with the cooperation of the Society of Automotive Engineers (SAE). He is responsible for the editorial management and direction of the monthly magazine. Vasilash continues to write a monthly column for AD&P and contributes several stories to each issue.

Vasilash has more than 20 years of experience writing about the automotive industry, best practices and new technologies. His work has appeared in a variety of venues, ranging from The Wall Street Journal to Lightworks, a journal of contemporary art. He has made numerous presentations at a variety of venues ranging from the annual meeting of the Association for Manufacturing Technology (AMT) to the Center for Constructive alternatives at Hillsdale College.

Prior to his present position, Vasilash was editor-in-chief of both Automotive Production and Production magazines—predecessors to AD&P. He joined Cincinnati, Ohio-based Gardner Publications in 1987 as executive editor of Production magazine.

Prior to that, Vasilash had editorial positions with the Rockford Institute and the Society of Manufacturing Engineers (SME).

He earned a Bachelor of Science degree in Journalism and a Master of Arts degree from Eastern Michigan University in Ypsilanti, Michigan. He is a member of the Automotive Press Association.

Volkswagen’s Remarkably Good Low Number
10. May 2016

Last week Volkswagen announced two low numbers, one of which is actually really quite impressive. It is not 27,112, the number of vehicles that Volkswagen of America delivered in April, which is down 9.65 percent compared to April 2015, and let’s face it: the pre-diesel debacle sales of 30,009 in April 2015 wasn’t exactly stellar.

No, the lower number of interest is 7:49.21. That’s the time that a Golf GTI Clubsport S required to rip around the Nürburgring Nordschleife, setting a new record for front-drive production cars.


The previous record-holder was a 2015 Civic Type-R, which ran the route in 7:50.63.

(And to be fair to Honda, it is worth noting that in April it delivered 35,331 Civics in the U.S., more than the entire number of VWs.)

Anyway, about that Golf GTI Clubsport S.

The idea to develop the limited edition car—there will be just 400 built for the global market—came after the development of the conventional GTI. Of that car, Karsten Schebsdat, head of Chassis Tuning, said, “It was obvious to all of us that this GTI had immense potential, so we decided to get the most performance possible out of this car. A small team went through the entire process, from bottom to top, pretty much like it was back when the first Golf GTI came into being.”

One of the things that team did was create a lighter car by doing such things as getting rid of the rear seats and the central arm rest. They installed a smaller battery. They ripped out the insulation. They removed the variable-height trunk floor, the rear parcel shelf, and the floor mats.

They installed a light aluminum subframe for the front suspension and aluminum brake covers.


But the use of 235/35 ZR Michelins on19-inch “Pretoria” aluminum-alloy wheels, Dynamic Chassis Control (DCC), a strut brace, a partition net behind the seats and carpet in the rear added mass.

Overall, the weight down is 66 pounds compared to a Golf GTI Clubsport. The S model has an unladened weight of 2,833 pounds.

Take that and realize that the engine—which is essentially based on the 2.0-liter four found in regular GTIs—produces 307 hp and 280 lb-ft of torque at from 1,700 to 5,000 rpm, and you can understand why the GTI Clubsport S, which has a top speed of 162 mph and a 0 to 62 mph time of 5.8 seconds, was so masterful on the track in Germany.

(Of course, they had to do a number of other things, such as modify the ESC software and utilize a special sport chassis. But still. . . .)

Sometimes when automakers announce low numbers it is for something they can be proud of. And VW can.

Don Panoz Isn’t Slowing Down
9. May 2016

Way back in 2000, we ran an article that opened with the provocative question: “Why Is Panoz America’s Coolest Car Company?”

The company, Panoz Auto Development, was established by Danny Panoz, whose father, Don Panoz, established the pharmaceutical company that invested the time-release transdermal patch—yes, the nicotine patch that is used by people who want to quit smoking.

As you might imagine, Don Panoz became rather wealthy as a result of that.

While his son was interested in building cars, Don Panoz was interested in car racing. And along the way he owned the American Le Mans Series (ALMS) and the Road Atlanta and Sebring race tracks.

Don Panoz had a number of drivers who raced for teams he was associated with, including Mario Andretti, who drove a Panoz LMP1 car at Le Mans in 2000—and who crashed the car, which agitated Don Panoz such that even though he’d used the patch to quit smoking, he grabbed a cigarette from someone who walked by after the car radio had gone dead and regained the habit he’d lost.

2016 WeatherTech SportsCar Championship Rolex 24 Hours Daytona

Don Panoz is nothing if not knowledgeable and colorful, and even at age 81 deeply engaged in the auto industry, now through the DeltaWing Technology Group, of which he is the chairman.

Panoz shares some of his insights on this edition of “Autoline After Hours” with Autoline’s John McElroy, Todd Lassa of Automobile Magazine, and me.

The DeltaWing race car is a highly efficient vehicle that is clearly unusual in shape compared with the cars with which it competes in the IMSA 2016 WeatherTech SportsCar Championship Series.

From plan view, it is essentially triangular, broad back by the rear tires and angling forward toward the front pair.

According to Panoz because the car is so light and aerodynamic, it can operate with a smaller engine than its competitors, and run much more efficiently. It is a combination of factors that he describes as “disruptive cumulative technologies.”

Panoz and his colleagues are taking this thinking to the design and engineering of passenger cars, such as a three-passenger car, the CitiGo, which he says is configured so that it can be powered by an internal combustion engine, an electric motor or a combination of the two.

And speaking of electric motors, DeltaWing Technology is working with DHX Electric Machines on the development of an electric motor that Panoz says are about 75% smaller than conventional motors due to an innovative design.

And you can see it all here:

Audi SUV Is Diesel Powered
6. May 2016

Don’t think for a minute that the Volkswagen Group is going to be abandoning diesels.

Coming this summer is the Audi SQ7 TDI, which Audi claims will be “the world’s most powerful diesel SUV.”

Audi SQ7 TDI

The 4.0-liter SQ7 TDI (that stands for turbo-direct injection, incidentally, and in this case there are twin turbochargers) engine will provide 435 hp and a massive 663.8 lb-ft of torque.

The 0 to 62 mph (a.k.a., 0 to 100 km/h) time is just 4.8 seconds. But Audi is sufficiently environmentally conscious to note that the SQ7 TDI returns an average of 32.7 mpg.

One interesting feature is an electric-powered compressor (EPC) that facilitates the performance of the two turbos at lower revs, reducing turbo lag. Two points about the EPC. One is that it is said to be the first production application of such a system. And the other is that the power for the EPC, which peaks at 7 kW, is provided by a 48-volt system, the first time that Audi has employed one. (Of course, there is still a 12-volt system in the SQ7 TDI, with the two systems being connected via a DC/DC converter.)

Audi SQ7 TDI

The vehicle features a 48-volt lithium-ion battery that’s located beneath the luggage compartment; it provides peak output of 13 kW.

The 48-volt system also makes possible an electromechanical active roll stabilization system (eAWS), an actuator located on the axle that includes a three stage planetary gearbox to control body roll in turns and to counteract understeering.

And for those who are taking advantage of that 435-hp diesel, countermeasures like that for handling are undoubtedly most beneficial.

2016 Chevrolet Volt Premier
5. May 2016

When the first-generation Chevrolet Volt appeared in 2010, it was almost more of a cause than it was a car.

The genesis of this goes back to the mid-00s. As Bob Lutz, who was heading up General Motors product development at the time writes in his Car Guys vs. Bean Counters about a position he took during an Automotive Strategy Board meeting, “I once again advocated that we create the world’s first electric car. . . . Only that way, I argued, could we blunt the relentless reputational rise of Toyota, coupled, of course, with the ‘gang that couldn’t shoot straight’ yoke around our neck.”

Toyota had the Prius and GM still had the Hummer H2 at the time.

They worked diligently and showed the Volt concept at the 2007 North American International Auto Show in Detroit. Then the model year 2011 Volt arrived just a few short years later.

The first Chevrolet Volt available for sale, vehicle identification number BU10002,  pictured at Detroit-Hamtramck Assembly. This vehicle will be offered in an online auction at <> , from Nov. 30 to Dec. 14. Proceeds from the auction will benefit the Detroit Public Schools Foundation to support science, math, engineering, and technology education initiatives. (Photo by John F. Martin for Chevrolet).

The original Volt

One of the problems in the early days—something that continued to be a cause for GM—was describing the Volt. They insisted that it wasn’t a hybrid. Presumably that had more than a little something to do with the fact that with Prius, Toyota essentially owns share of mind for the hybrid term.

It was an electric vehicle, they maintained. But then, people noted, there was the not-trivial matter of a 1.4-liter, 84-hp internal combustion engine under its hood. “That’s not an engine!” came the response. “That’s a generator used to charge the lithium-ion batteries, not to turn the wheels of the vehicle.”

This gave rise to the term “extended-range electric vehicle.”

Which then gave rise to those who discovered that under certain conditions the engine was used as an engine. . .

And it became all too complicated for regular people to sort out.

Arguably, one consequence of all this was that the Volt wasn’t perceived as a car straight-up. It was something undefinable, or if defined, incapable of being understood.

It could have simply been presented as a car that you can plug in to an outlet in your garage and that’s capable of using no gasoline if you went a short distance (under ~35 miles) and little gas compared to other compact cars (up to 379 miles).

Instead, all of the extended-range/generator-not-engine folderol.

And the Volt hasn’t sold particularly well.

In 2015 Chevrolet sold just 15,393 Volts. Meanwhile, the Prius gave rise to a family, and altogether, 184,794 were sold.

Now the second-generation Volt has been released.

2016 Chevrolet Volt

Volt 2.0

Here’s what you need to know: It is a sporty compact car that can go really, really far if you have its battery charged and a full tank of unleaded: about 420 miles. If you have a fully charged battery, you can go about 53 miles on electricity alone.

It is a car. It is not a cause.

It is not a science experiment. There is high technology galore under the hood and under floor and all the way back to the trunk. But you need not concern yourself with any of that.

You can pump gas into it just like a regular car in the receptacle in the rear passenger’s side. You can plug it in to a household 110-v outlet via a receptacle in the front driver’s side of the car.

2016 Chevrolet Volt

When you are driving with that 18.4-kWh lithium-ion battery pack charged, it is really a peppy car. When it runs out of juice, then it’s not so peppy, but you’ll still get about 42 mpg.

Know well that if you’re interested in fuel efficiency without sacrifice of amenities (the vehicle driven here has a leather-wrapped, heated steering wheel, for example), then consider the Volt. If you want performance, then your local Chevy dealer certainly has a Camaro or Corvette that can fit the bill.

But the electric drivetrain is so good in the Volt that it is in some ways an Achilles heel. That is, when I was driving the car and the battery was depleted, there was a discernable change in the performance of the car. It became just an ordinary compact sedan. And as the transmission functions are served by the Voltec electric drive system rather than by, say, a step-gear transmission (which admittedly would not be appropriate for a vehicle of this powertrain setup), under acceleration it sometimes seemed as though it was working too hard (and this is “normal acceleration,” not “let’s see how fast I can make this go” acceleration).

According to members of the Volt team that I’ve talked to, Volt customers for the most part perform opportunistic charging whenever possible. So they’ve designed the 120-v cord set to be easier to handle. Think of this in the context of being in an airport and seeing people with their mobile phones plugged in. You get the juice when and where you can.

2016 Chevrolet Volt

That said, the amount of time necessary to fully charge a Volt with a household socket is on the order of 13 hours. Should you have access to a Level II charger, which you can sometimes find in parking lots (I was surprised to discover how few there are; in Ann Arbor, for example, the Downtown Development Agency has installed 23 located in six parking lots, so given that that city is one of the places where you’re likely to find more plugs with cars than, say, Farmington or Livonia, you’re likely to find those chargers in use), the time to charge is 4.5 hours.

Another reason why there is a bit of a hobble to the Voltec electric drive system is that when you’re driving on the battery without the 1.5-liter range extender in use, the electric variant of miles per gallon (MPGe) is great: 106. But then when the range extender is in full play, that number does nothing but go down, so even if you bottom out, say, at 46 mpg, you think about where you were and what you’ve arrived at. (OK, there’s no getting around this, but I still found it somewhat disconcerting.)

2016 Chevrolet Volt

But to get back to the original point: If you’re looking for a compact that does, indeed, get really, really good gas mileage, a car that happens to have a port in the front fender where you can plug it in, then you really ought to take a look at the 2016 Volt. Sure, you’re going to pay more for it than a conventional compact, but in terms of the way the car is designed and equipped, the premium for the premium powertrain is supplemented by some good gear, so it’s not just the batteries and the motors that you’re getting for your money.

Yes, a CAR to consider.

Selected specs

Motors: Twin-motor arrangement, 110 kW

Torque: 398 Nm

Range extender: 1.5-liter, DOHC I4

Material: Aluminum block and head

Horsepower: 101 @ 5,600 rpm

Steering: Rack-mounted electric-

Wheelbase: 106.1 in.

Length: 180.4 in.

Width: 71.2 in.

Height: 56.4 in.

Seating: Five

Cargo volume: 10.6 cu. ft.

EPA fuel economy: all electric: 106 MPGe; gas: 42 mpg

Driving Fuel Efficiency Improvements
4. May 2016

Electrification of the vehicle powertrain doesn’t mean getting rid of the internal combustion engine and sticking an electric motor in its place and batteries where the fuel tank would otherwise be.

And the benefits can be enormous by taking a clever approach that combines what already exists—like an internal combustion engine—with a different architecture, both from the standpoint of an electrical system (going to 48 volts) and adding an electric motor.

With these components and the intelligent operating strategy, the GTC prototype not only ups fuel efficiency by 17 percent overall. It also meets the limits set by the upcoming Euro 6c emissions standard (2017/2018)

This was explained at the recent Vienna Motor Symposium, where Ford and suppliers Continental and Schaeffler revealed the second-generation of the Ford Focus-based Gasoline Technology Car (GTC II).

How much of an improvement can be gained by this approach that implements 48-volt hybridization?

Well, the GTC I vehicle, which they showed in Vienna in 2014, had a 17% fuel economy improvement in the New European Driving Cycle (NEDC).

GTC II takes the gains of GTC I and makes them even better. They estimate a 25% fuel economy improvement compared with a non-GTC Focus.

The GTC II, like its predecessor, features a turbocharged 3-cylinder 1-liter Ecoboost gasoline engine. What they’ve done with the vehicle is integrate the electrical motor into the drivetrain with a belt that goes between the engine and manual transmission. There are two clutches, one upstream and one downstream of the belt. Consequently the engine can be decoupled when required and the electric motor can run independently of the engine.

The GTC II’s electric motor is  
integrated in the drive train by  
means of a belt that runs  
between the internal  
combustion engine and the  
transmission. Two clutches,  
one upstream and one  
downstream of the belt, allow  
the internal combustion  
engine to be completely  
decoupled when required.  
The electric motor can then  
be used independently of the  

Prof. Dr.-Ing. Peter Gutzmer, Member of the Schaeffler Executive Board responsible for Research & Development, explained, “The GTC II’s electronic clutch supports functions such as electric launch, electric stop-go operation and energy recuperation at speeds almost down to standstill.”

In addition to which, they optimized the engine by increasing the compression ratio and adjusting the intake valve closing, or as it is said in the business: they improved the Atkinson cycle performance of the engine.

First practical application for     
electrically heated 48 volt     
EMICAT catalyst

One of the concerns with systems where the engine may not be operating at all times is emissions, so they’ve deployed the Continental electrically heated 48-volt EMICAT catalyst so that the GTC II can meet emissions requirements, even after the engine has been shut off for a long period.

In effect, they addressed the overall powertrain architecture for the GTC II to gain the fuel economy benefits, or as Kregg Wiggnis, senior vice president, Powertrain, Continental North America, put it, “The second generation Gasoline Technology Car demonstrates the huge potential of a mild hybrid when the 48 volt electrical system, the internal combustion engine and the operating strategies are optimized holistically as a complete system.”

« Prev | | Next »

RSS RSS  |  Atom Atom